

NORTHERN BEACHES SECONDARY COLLEGE

MANLY SELECTIVE CAMPUS

Year 12

Trial Examination

2022

Mathematics Extension 1

General Instructions

- Reading time 10 minutes
- Working time 2 hours
- Write using black pen
- Write your student number on the front of every booklet.
- In Questions 11 to 14 show relevant mathematical reasoning and/or calculations.
- NESA approved calculators may be used.
- Weighting:30%

Section I Multiple Choice

- 10 marks
- Attempt all questions.
- Answer Sheet provided
- Allow about 15 minutes for this section

Section II Free Response

- 60 marks
- Start a separate booklet for each question.
- Each question is of equal value.
- All necessary working should be shown in every question.
- Allow about 1 hour and 45 minutes for this section.

Section I

10 marks

Attempt Questions 1 – 10

Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1 - 10.

1. Which of the following parametric equations represents a circle that passes through the origin?

- A. $x = 3 + 3\cos\theta$, $y = 4 + 3\sin\theta$
- B. $x = 3 + 4\cos\theta$, $y = 4 + 4\sin\theta$
- C. $x = 3 + 5\cos\theta$, $y = 4 + 5\sin\theta$
- D. $x = 3 + 7\cos\theta$, $y = 4 + 7\sin\theta$
- 2. The vector $u = \frac{1}{2}$ has a magnitude of 6 units and makes an angle of 135° with the horizontal.

Which of the following is vector u?

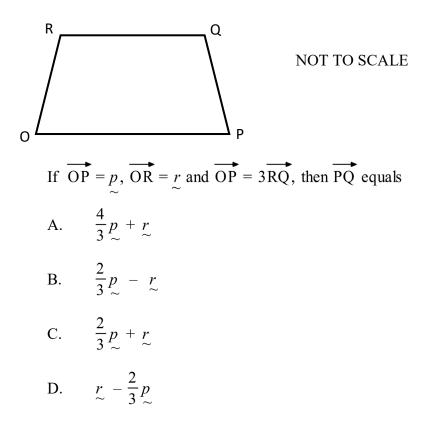
- A $3\sqrt{2} i + 3\sqrt{2} j$ B $-3\sqrt{2} i + 3\sqrt{2} j$ C $2\sqrt{3} i + 2\sqrt{3} j$ D $-2\sqrt{3} i + 2\sqrt{3} j$
- 3. Which one of the following is not a Bernoulli random variable?
 - A. The number of P's when a letter is chosen at random from the word PINEAPPLE.
 - B. The number of vowels when a when a letter is chosen at random from the word MATHS.
 - C. The number of heads when a fair coin is tossed twice.
 - D. The number of 6's when a fair die is rolled once.

4. The derivative of $y = \cos^{-1}[2f(x)]$ is :

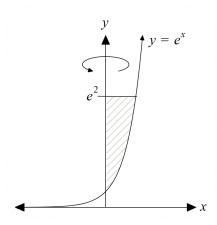
A.
$$\frac{dy}{dx} = -\frac{1}{\sqrt{1 - [f(x)]^2}}$$

B. $\frac{dy}{dx} = -\frac{2}{\sqrt{1 - 4[f(x)]^2}}$
C. $\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - 4[f(x)]^2}}$
D. $\frac{dy}{dx} = -\frac{2f'(x)}{\sqrt{1 - 4[f(x)]^2}}$

5. The diagram shows a trapezium OPQR.



6. A solid of revolution is to be formed by rotating the area enclosed by the function $y = e^x$, the line $y = e^2$, and the y-axis about the y-axis.



Which of the following would give the volume of the solid of revolution?

A.
$$V = \pi \int_{0}^{2} (\ln x)^{2} dx$$

B.
$$V = \pi \int_{0}^{2} e^{2x} dx$$

C.
$$V = \pi \int_{1}^{e^{2}} (\ln y)^{2} dy$$

D.
$$V = \pi \int_{1}^{e^{2}} e^{2y} dy$$

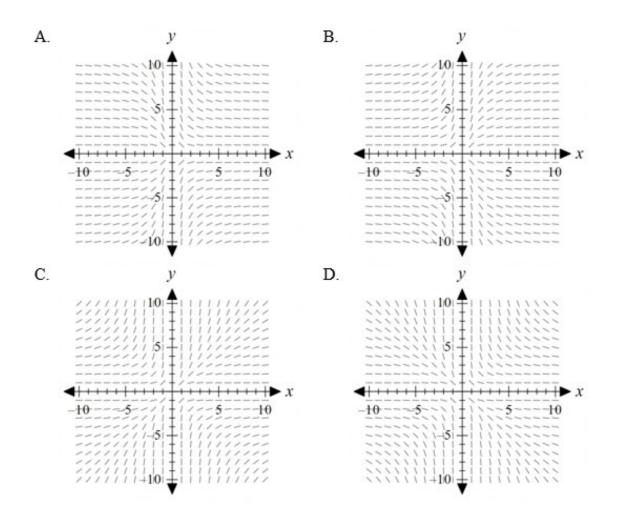
7. If
$$\int_0^k \frac{1}{4+x^2} dx = \frac{\pi}{6}$$
, what is the value of k?

A. 1
B.
$$\frac{1}{2}$$

C. $\sqrt{3}$
D. $2\sqrt{3}$

- 8. How many solutions does the equation $\sin 4x \sin 2x = 0$ have for $0 \le x \le 2\pi$?
 - A. 7
 - B. 8
 - C. 9
 - D. 10
- 9. A differential equation is given to be $\frac{dy}{dx} = \frac{y}{x^2}$

Which of the following best represents the direction field of the differential equation?



- 10. In NSW in 2021 approximately 70,000 students started school in kindergarten. 80% of these students could already write their name. If random samples of 20 kindergarten students were selected, what would be the shape of the sampling distribution of p° the proportion of children who can already write their name?
 - A. Positively skewed
 - B. Negatively skewed
 - C. Approximately normal
 - D. Uniform

End of Multiple Choice

Section II

60 marks - Attempt Questions 11 - 14

Allow about 1 hour and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Questions 11 - 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11: Use new writing book for this question

a) Solve
$$\frac{x}{x+1} \le 5$$

15 marks

1

2

3

b) There are 26 different time periods in which classes at a high school can be scheduled.
 If 508 classes need to be scheduled next term, what is the minimum number of different rooms needed to accommodate all classes?

c) Find the term independent of x in the expansion of
$$\left(3x^2 - \frac{1}{x}\right)^{12}$$
 3

d) A polynomial P(x) has a remainder of 2x + 1 when divided by $x^2 - 5x + 6$. What is the remainder when P(x) is divided by x - 3?

e) Solve
$$\sqrt{2}\cos\left(x+\frac{\pi}{4}\right) + \sqrt{2}\cos\left(x-\frac{\pi}{4}\right) = 1$$
 for $-\pi \le x \le \pi$ 3

f) A group of 10 people arrive to eat at a restaurant. The only seating available for them is at two circular tables, one that seats six people and another that seats four. Assuming that the seating arrangement is random, what is the probability that a particular couple will be seated at the same table? (The couple do not have to sit next to each other).

End of Question 11

8

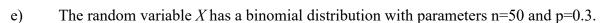
Question 12: Use new writing book for this question

a) Explain why the statement 2 + 4 + ... + 2n = n(n-1) + 2, for $n \ge 1$ cannot be proved by mathematical induction. Support your explanation with working.

b) Evaluate
$$\int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{4-4x^{2}}} dx$$
 2

c) The vectors
$$p_{\sim} = \begin{pmatrix} -6 \\ a \end{pmatrix}$$
 and $q_{\sim} = \begin{pmatrix} a+1 \\ -7 \end{pmatrix}$ are parallel. Find the possible values of a . 2

d) The graph of
$$y = f(x)$$
 is shown.

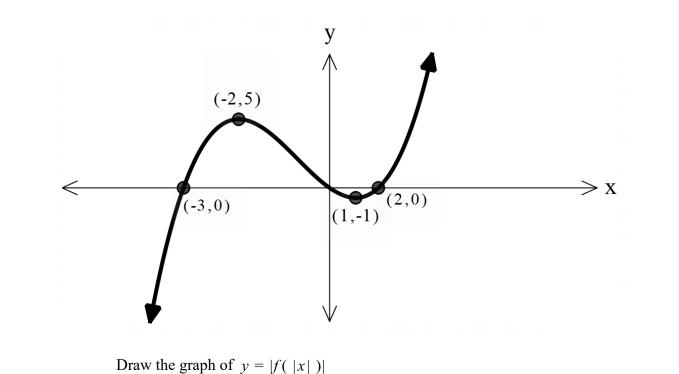


- (i) Find the standard deviation.
- (ii) Find the probability that *X* is equal to the mean of the distribution.

f) Solve the differential equation
$$\frac{dy}{dx} = y^3$$
 for y, given when $x = 0$, $y = 1$

Give your answer in the form y = f(x).

End of Question 12



15 marks

2

3

1 2

Question 13: Use new writing book for this question

2

3

a) Tomatoes are considered to be either determinate or indeterminate.

Mario buys tomatoes from his local store where the tomatoes are twice as likely to be sourced from Farm A than Farm B.

It is known that 60% of Farm A's tomatoes are determinate while 70% of Farm B's tomatoes are determinate. Mario cannot tell the difference between these tomatoes from their appearance.

- (i) Show that the probability that a randomly selected tomato is determinate is 19/30. 1
- (ii) Mario buys ten tomatoes. Find the probability, correct to two decimal places, that no more than eight of these are determinate.
- (iii) Mario buys 33 tomatoes to make a batch of tomato paste and knows from his grandmother that at least 55% of the tomatoes should be determinate to achieve a fine paste.

By using a normal approximation to the sample proportion, determine the approximate probability that the tomato paste produced will be considered fine.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

Table of Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z

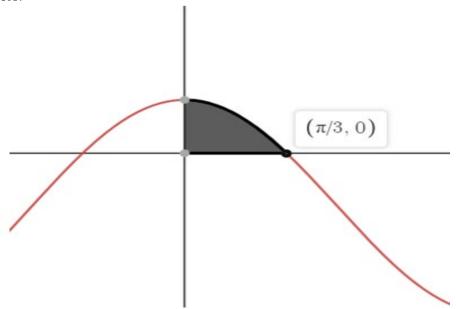
Question 13 continues on next page

Question 13 continued

- b) Solve the equation $\sin \theta + \cos \theta = \frac{1}{2}$ for $[0, 2\pi]$. Answer in radians to three decimal places.
- c) Suppose $u = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, v = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$ and θ is the acute angle between them.

Show that the exact value of $\sin 2\theta$ is $\frac{4}{5}$. Give clear reasoning for your answer.

d) The diagram below shows part of the curve $y = 2\cos x - 1$. The curve intersects the x-axis at the point $\left(\frac{\pi}{3}, 0\right)$. The shaded region is enclosed by the curve and the coordinate axes.



Determine the volume of the solid formed when the shaded region is rotated 360° about the *x*-axis.

3

End of Question 13

3

3

(i) Expl

by the differential equation
$$\frac{dm}{dt} = -\frac{3m}{40+t}$$
. 1

- (i
- (i Give your answer correct to one decimal place.

d) Let
$$f(x) = \tan^{-1}\left(\frac{e^x - e^{-x}}{2}\right)$$
 and let $g(x) = \tan^{-1}(e^x)$.

(i) Show that
$$f'(x) = 2g'(x)$$
 3

Hence or otherwise, express f(x) in terms of g(x)1 (ii)

End of Examination

Question 14: Use new writing book for this question

a)

c)

- Use mathematical induction to prove that $8^n 5^n$ is a multiple of 3 for all positive
- Find the exact value of $\cos(\tan^{-1}(-3))$ b) 2
- integers n.

Pure water is pumped into the tank at 20 L/min. At the same time, the perfectly mixed brine in the tank is pumped out of the tank at 15 L/min.

A 500 L tank contains 200 L of brine (salt in water) with 50 kg of salt dissolved.

ain why the amount of salt
$$m$$
 kg in the tank after t minutes can be modelled

the differential equation
$$\frac{dm}{h} = -\frac{3m}{1000}$$
.

3

3

2

	2022 Year 12 Mathematics Extension 1 Trial solutions	
Q	Solution	Answer
1	Option C: $x = 3 + 5\cos\theta \implies \cos\theta = \frac{x-3}{5}$ $y = 4 + 5\sin\theta \implies \sin\theta = \frac{y-4}{5}$ $\sin^{2}\theta + \cos^{2}\theta = \frac{(x-3)^{2}}{25} + \frac{(y-4)^{2}}{25}$ $1 = \frac{(x-3)^{2}}{25} + \frac{(y-4)^{2}}{25}$	C
	$(x-3)^{2} + (y-4)^{2} = 25$	
	centre: (3,4), radius: 5 The centre is $\sqrt{3^2 + 4^2} = 5$ units away from the origin, so the origin	
	lies on the circumference.	
2	$cos 45 = \frac{adj}{6}$ $adj = 6cos 45 = \frac{6}{\sqrt{2}} = 3\sqrt{2}$	B
	$\sin 45 = \frac{opp}{6}$ $opp = 6\sin 45 = \frac{6}{\sqrt{2}} = 3\sqrt{2}$ $\therefore \qquad u = -3\sqrt{2} \ i + 3\sqrt{2} \ j$	
3	The number of heads when a fair coin is tossed twice.	С

4	let u = 2f(x)	D
	$\frac{du}{dx} = 2f'(x)$	
	$\frac{dy}{du} = -\frac{1}{\sqrt{1-u^2}}$	
	$\frac{dy}{dx} = -\frac{2f'(x)}{\sqrt{1 - 4[f(x)]^2}}$	
_	$\frac{dx}{\sqrt{1-4[f(x)]^2}}$	
5	$\frac{1}{3} \frac{p}{\sim}$	D
	$r \sim r + \frac{1}{n}$	
	$\frac{r}{\sim}$ $\frac{r+\frac{1}{3}p}{\sim}$	
	$\overrightarrow{PQ} = - p + \left(r + \frac{1}{3} p \right) = r - \frac{2}{3} p$	
6	$x = x^{X} \rightarrow 1$	6
6	$y = e^x \Rightarrow \ln y = x$	C
	$V = \pi \int x^2 dy = \pi \int_1^{e^2} (\ln y)^2 dy$	
7	$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right)$	D
	$\left[\frac{1}{2}\tan^{-1}\left(\frac{x}{2}\right)\right]_{0}^{k} = \frac{\pi}{6}$	
	$\frac{1}{2}\tan^{-1}\left(\frac{k}{2}\right) - \frac{1}{2}\tan^{-1}0 = \frac{\pi}{6}$	
	$\tan^{-1}\left(\frac{k}{2}\right) = \frac{\pi}{3}$	
	$\frac{k}{2} = \tan\left(\frac{\pi}{3}\right) = \sqrt{3}$	
	$k = 2\sqrt{3}$	

8	$\sin 4x = \sin 2x$ Solving graphically – 9 points of intersection	
	VPoint of IntersectionPoint of IntersectionPoint of IntersectionPoint of Intersection $(7\pi \sqrt{3})$ $(2\pi \sqrt{3})$	
	Point of Intersection $\left(\frac{\pi}{6}, \frac{\sqrt{3}}{2}\right)$ $\left(\frac{\pi}{2}, 0\right)$ $\left(\frac{7\pi}{6}, \frac{\sqrt{3}}{2}\right)$ $\left(\frac{3\pi}{2}, 0\right)$	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
9	$\frac{dy}{dx} = \frac{y}{x^2}$ Denominator is always positive. Therefore gradient is positive where y>0 (Q1 and Q2) and negative where y<0 (Q3 and Q4) \rightarrow B	В
10	$np = 20 \times 0.8 = 16$ $nq = 20 \times 0.2 = 4$	В
	As nq<5 the distribution is not approximately normal. As p=0.8 the peak will	
	be to the right and the distribution is negatively skewed.	
Q	Solution	Marks
11a	$\frac{x}{x+1} \le 5$	3 marks
	$x \neq -1$	1st mark for
	$x(x+1) \le 5(x+1)^2$	finding both critical values
	$0 \le 5(x+1)^2 - x(x+1)$	
	$0 \leq (x+1)(5x+5-x)$	2nd mark for using
	$0 \leq (x+1)(4x+5)$	substitution to
		test regions or using graph of parabola
	(-1.25,0) (-1,0)	3rd mark for
		excluding x=-1 from solution

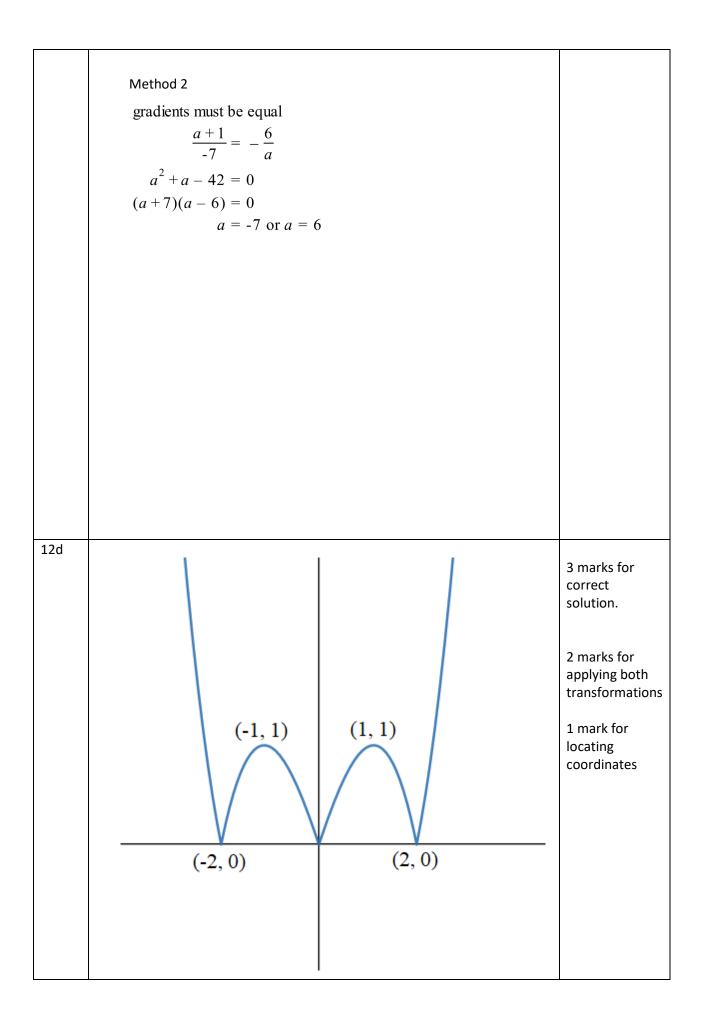
	5	
	$x \leq -\frac{5}{4} \text{ or } x \geq -1$	
	but $x \neq -1$	
	$\therefore x \leq -\frac{5}{4} \text{ or } x > -1$	
	<u>Alternative method:</u>	
	$\frac{x}{x+1} \le 5$	
	Consider the equation: $\frac{x}{x+1} = 5$	
	$\begin{array}{l} x+1\\ x=5x+5 \end{array}$	
	$\begin{array}{l} x - 5x + 5 \\ 4x = -5 \end{array}$	
	$x = -\frac{5}{4}$	
	$x = -\frac{1}{4}$	
	Critical values are -5/4 and -1.	
	Substitute values in each region, e.g.	
	When $x = -2$, $LHS = \frac{2}{2+1} = \frac{2}{3} \le 5$ true	
	When $x = -1.1$, $LHS = \frac{-1.1}{-1.1+1} = 11 \le 5$ false	
	When $x = 0$, $LHS = \frac{0}{0+1} = 0 \le 5$ true	
	$\therefore x \leq -\frac{5}{4} \text{ or } x > -1$	
11b	$\frac{508}{26} = 19.53$	1 mark
	26 Therefore a minimum of 20 rooms is needed	
11c	general term of $\left(3x^2 - \frac{1}{x}\right)^{12}$	3 marks
	general term of $\begin{pmatrix} 3x^2 - \frac{1}{x} \end{pmatrix}$	1 st mark for
		correct
	$= {}^{12}\mathbf{C}_{k} (3x^{2})^{k} (-x^{-1})^{12-k}$	expression for
	$= {}^{12}\mathbf{C}_{k} {}^{3^{k}} {x^{2^{k}} (-1)^{12-k} x^{k-12}}$	the general term
	$= {}^{12}\mathbf{C}_{k} {}^{3^{k}} {}^{(-1)} {}^{12-k} {}^{3^{k}-12}$	2 nd mark for
		determining
	For independent term, $3k - 12 = 0 \implies k = 4$	correct value of <i>k</i>
	$\Rightarrow {}^{12}\mathbf{C}_4 \; 3^4 \; (-1)^8 \; = \; 40095$	

		3 rd mark for
		evaluating the
		constant term
11d	The polynomial can be written in the form:	2 marks
	P(x) = (x - 3)(x - 2)Q(x) + 2x + 1	
		1 st mark for
	The remainder is P(3):	expressing P(x) as
	P(3) = 0 + 2(3) + 1	(x-3)(x-2)*Q(x)
	r = 7	+(2x+1)
		2 nd mark for
	Alternative method:	substitution of
	$\overline{P(x)} = (x-3)(x-2)Q(x) + 2x + 1$	<i>x</i> = 3
	$\frac{P(x)}{r-3} = (x-2)Q(x) + \frac{2x+1}{r-3}$	
	$\lambda = J$ $\lambda = J$	
	$= (x-2)Q(x) + \frac{2x-6}{x-3} + \frac{7}{x-3}$	
	$= (x-2)Q(x)+2+\frac{7}{x-3}$	
	x - 3 So the remainder is 7	
11e		3 marks
	$\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)+\sqrt{2}\cos\left(x-\frac{\pi}{4}\right)=1$	
	r(1, 1, 1) $r(1, 1, 1)$	1 st mark for
	$\int \sqrt{2} \left(\frac{1}{\sqrt{2}} \cos x - \frac{1}{\sqrt{2}} \sin x \right) + \sqrt{2} \left(\frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x \right) = 1$	simplifying the
		LHS using trigonometric
	$\cos x - \sin x + \sin x + \cos x = 1$	identities
	$2\cos x = 1$	
	$\cos x = \frac{1}{2}$	2 nd mark for
		obtaining a solution to the
	$x = \pm \frac{\pi}{3}$	resulting
		equation
	Alternative method:	
		3 rd mark for all
	$\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)+\sqrt{2}\cos\left(x-\frac{\pi}{4}\right)=1$	solutions
	$\cos\left(x+\frac{\pi}{4}\right) + \cos\left(x-\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$	
	$2\cos x \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$ (sum to product)	
	$2\cos x \times \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$	
	$\sqrt{2}$ $\sqrt{2}$	
	$\cos x = \frac{1}{2}$	
	2	
	$x = \pm \frac{\pi}{3}$	
	3	

11f	P(sitting at same table)	3 marks for
	= $P(\text{both at the 6-seater}) + P(\text{both at the 4-seater})$	correct solution
	$=\frac{6}{10}\times\frac{5}{9}+\frac{4}{10}\times\frac{3}{9}$	2 marks for correctly
	7	finding the total
	$=\frac{7}{15}$	number of
	Table 1	arrangements
	5/9	or equivalent
		merit, and consideration
	Table 1 $\frac{1}{4/9}$ Table 2	of separate
	6/10	cases (both at
	6/9 Table 1	Table 1 or both
	4/10 Table 2	at Table 2)
	3/9	
	Table 2	1 mark for
		correctly
	Alternative method:	arranging
	Alternative method.	people in two
	total number of arrangements is =	circles (5!3!)
	[no. of ways to split 10 people into 6 and 4]	or
	× [no. of ways to arrange 6 people in a circle]	
	× [no. of ways to arrange 4 people in a circle]	1 mark for
	(10) = 0. 151000	correct use of
	$= \binom{10}{6} \times 5! \times 3! = 151200$	nCk to select a group of 6 or 4,
		or equivalent
	Number of arrangements where the couple is seated at Table 1 (the 6-	merit
	seater) is:	
	[no. of ways to select 4 people to join them] \times	
	 × [no. of ways to arrange 6 people in a circle] × [no. of ways to arrange 4 people in a circle] 	
	$=\binom{8}{4} \times 5! \times 3! = 50400$	
	$-(4) \times 3! \times 3! = 30400$	
	Number of arrangements where the couple is seated at Table 2 (the 4-	
	seater) is:	
	[no. of ways to select 2 people to join them] × × [no. of ways to arrange 6 people in a circle]	
	× [no. of ways to arrange 4 people in a circle]	
	$=\binom{8}{2} \times 5! \times 3! = 20160$	
	(2)	
L	1	I

	Therefore, $P(couple \ at \ same \ table) = \frac{50400 + 20160}{151200} = \frac{70560}{151200} = \frac{7}{15}$	
	Alternative method:	
	The 10 people are split up into a group of 6 and 4.	
	Total no. of combinations = $\binom{10}{6}$ = 210	
	No. of combinations where the couple is in the group of 6 = no. of ways to choose 4 people to join them = $\binom{8}{4} = 70$	
	No. of combinations where the couple is in the group of 4 = no. of ways to choose 2 people to join them = $\binom{8}{2} = 28$	
	$P(couple at same table) = \frac{70 + 28}{210} = \frac{7}{15}$	
12a	Test n = 1 LHS = 2 RHS = 2 therefore true for n = 1	1 mark for testing n = 1
	assume n = k is true	1 mark for
		nroving LHS
	$2 + 4 + \dots + 2k = k(k - 1) + 2$ $k \ge 1$	proving LHS does not equal
	$2 + 4 + \dots + 2k = k(k - 1) + 2 \qquad k \ge 1$ Test if it is true for n = k + 1	does not equal RHS and explaining it
	Test if it is true for n = k + 1 $2 + 4 + \dots + 2k + 2(k + 1) = k(k + 1) + 2$ $LHS = k(k - 1) + 2 + 2(k + 1)$ $= k^{2} + k + 4$	does not equal RHS and
	Test if it is true for n = k + 1 $2 + 4 + \dots + 2k + 2(k + 1) = k(k + 1) + 2$ LHS = k(k - 1) + 2 + 2(k + 1)	does not equal RHS and explaining it fails at this step. NOTE: Must have the correct working.
	Test if it is true for n = k + 1 $2 + 4 + \dots + 2k + 2(k + 1) = k(k + 1) + 2$ $LHS = k(k - 1) + 2 + 2(k + 1)$ $= k^{2} + k + 4$ $RHS = k^{2} + k + 2$	does not equal RHS and explaining it fails at this step. NOTE: Must have the correct working. Students who did not have
	Test if it is true for n = k + 1 $2 + 4 + \dots + 2k + 2(k + 1) = k(k + 1) + 2$ $LHS = k(k - 1) + 2 + 2(k + 1)$ $= k^{2} + k + 4$ $RHS = k^{2} + k + 2$ $LHS \neq RHS$	does not equal RHS and explaining it fails at this step. NOTE: Must have the correct working. Students who

12b	1	
120	$\int_0^{\frac{1}{2}} \frac{1}{\sqrt{4-4x^2}} dx$	2 marks for correct working and solution.
	$=\int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{4(1-x^{2})}} dx$	
	$=\frac{1}{2}\int_{0}^{\frac{1}{2}}\frac{1}{\sqrt{1-x^{2}}}dx$	1 mark for factoring out the 4 and
	$=\frac{1}{2}\sin^{-1}\frac{1}{2} - \frac{1}{2}\sin^{-1}0$	multiplying the integral by ½.
	$=\frac{1}{2}\times\frac{\pi}{6}$	
	$=\frac{\pi}{12}$	
12c	Method 1	1 mark for
	$\mathbf{p} = \lambda \mathbf{q}$	correct working
	$-6\mathbf{i} + a\mathbf{j} = \lambda(a+1)\mathbf{i} - 7\lambda\mathbf{j}$	
	$a = -7\lambda$	1 mark for
		correct
	$\lambda = -rac{a}{7}$	solutions of a
	$-6 = \lambda(a+1)$	
	$-6 = -\frac{a}{7}(a+1)$	
	$42 = a^2 + a$	
	$a^2 + a - 42 = 0$	
	(a+7)(a-6) = 0	
	a = -7 or $a = 6$	



12e i	standard deviation = $\sqrt{50 \times 0.3 \times 0.7}$	1 mark
	= 3.24	
12 e ii	$mean = 50 \times 0.3$	1 mark for the
12 0 11	= 15	mean
	$P(X = 15) = {}^{50}\mathbf{C}_{15} \times 0.3^{15} \times 0.7^{35}$	1 mark for the
	= 0.12	final answer
12f	$\frac{dy}{dx} = y^3$	3 marks for
	ил	correct working
	$y^{-3}dy = 1 \ dx$	and solution.
	$\frac{1}{-2y^2} = x + C$	2 marks for
	$-2y^2$	correct C value
	$-\frac{1}{2} = 0 + C$	and correct expression for y
	-	squared.
	$c = -\frac{1}{2}$	1 magula fau
		1 mark for correct C value
	$\frac{1}{v^2} = \frac{1}{1 - 2x}$	
	$y^2 = \frac{1}{1 - 2x}$	
	$y = \frac{1}{2}$ since $r = 0$ $y = 1$	
	$y = \frac{1}{\sqrt{1 - 2x}}$ since $x = 0$ $y = 1$	
40.1	2 1 10	
13ai	$\frac{\frac{2}{3} \times 0.6 + \frac{1}{3} \times 0.7 = \frac{19}{30}}{P(X \le 8) = 1 - P(X = 9) - P(X = 10)}$	1 mark for correct solution
13a(ii)	$P(X \le 8) = 1 - P(X = 9) - P(X = 10)$	2 marks for
	$= 1 - {}^{10}\mathbf{C}_9 \left(\frac{19}{30}\right)^9 \left(\frac{11}{30}\right)^1 - {}^{10}\mathbf{C}_{10} \left(\frac{19}{30}\right)^{10} \left(\frac{11}{30}\right)^0$	correct solution
	(30) (30) (30) (30)	1 mark for
	- 0.25	writing expression for
		$P(X \le 8)$
13a(iii)	Method 1:	3 marks for
	Let \hat{p} be the random variable representing the sample proportion of determinate temptage.	correct solution
	determinate tomatoes. 19	2 marks for z
	$E(\hat{p}) = p = \frac{19}{30}$	score
	Standard deviation $(\hat{p}) = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{\frac{19}{30} \times \frac{11}{30}}{33}} = \sqrt{\frac{19}{2700}}$	
	Standard deviation (p) = $\sqrt{\frac{n}{n}} = \sqrt{\frac{2}{33}} = \sqrt{\frac{2}{2700}}$	1 mark for std
		dev

	Method 2: $E(X) = np = 33 \times \frac{19}{30} = 20.9$	
	$\sigma(X) = \sqrt{33 \times \frac{19}{30} \times \frac{11}{30}} \approx 2.768$ 33 × 55% = 18.15 $P(X \ge 18.15) = P\left(z \ge \frac{18.15 - 20.9}{2.768}\right) = P(z \ge -0.99)$ continues the same as in Method 1	
٨	Marker's comments: • Some students mixed values required to calculate z score (e.g. used standard deviation from method 1 but mean from method 2)	
÷	Auxiliary Angle method: $r = \sqrt{2}$ $\tan \alpha = 1 \implies \alpha = \frac{\pi}{4}$ $\sin \theta + \cos \theta = \sqrt{2} \sin \left(\theta + \frac{\pi}{4} \right)$ $\sin \left(\theta + \frac{\pi}{4} \right) = \frac{1}{2\sqrt{2}}$ $\theta + \frac{\pi}{4} = \pi - \sin^{-1} \left(\frac{1}{2\sqrt{2}} \right), 2\pi + \sin^{-1} \left(\frac{1}{2\sqrt{2}} \right), \frac{\pi}{4} \le \theta + \frac{\pi}{4} \le 2\pi + \frac{\pi}{4}$ $\theta + \frac{\pi}{4} = 2.7802, 6.6445$ $\theta = 1.995, 5.859$ $\sin \theta + \cos \theta = \sqrt{2} \cos \left(\theta - \frac{\pi}{4} \right)$ would also work for this method formulae method:	3 marks for correct solution 2 marks for writing in auxiliary angle form 2 marks for correct values of t 1 mark for finding r or α 1 mark for obtaining correct t expression 1 mark for

	2 2	
	$\sin\theta + \cos\theta = \frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2} = \frac{1+2t-t^2}{1+t^2}$	
	$\frac{1+2t-t^2}{1+t^2} = \frac{1}{2}$	
	$3t^2 - 4t - 1 = 0$	
	$t = \frac{4 \pm \sqrt{28}}{6} = \frac{2 \pm \sqrt{7}}{3}$	
	$\frac{\theta}{2} = \tan^{-1}\left(\frac{2+\sqrt{7}}{3}\right) \Rightarrow \theta = 1.995$	
	$\frac{\theta}{2} = \pi - \tan^{-1} \left \frac{2 - \sqrt{7}}{3} \right \Rightarrow \theta = 5.859$	
	Check that $\theta = \pi$ is not a solution:	
	$\sin \pi + \cos \pi = 0 + (-1) = -1 \neq \frac{1}{2}$	
	If using t-formulae method, must check that pi is not a solution. In this case, marks were not attached to this step	
	Alternative method:	
	$(\sin\theta + \cos\theta)^2 = \frac{1}{4}$	
	$\sin^2 \theta + 2\sin\theta\cos\theta + \cos^2 \theta = \frac{1}{4}$	
	$\sin 2\theta + 1 = \frac{1}{4}$	
	$\sin 2\theta = -\frac{3}{4}$	
	$2\theta = \pi + \sin^{-1}\left(\frac{3}{4}\right) 2\pi - \sin^{-1}\left(\frac{3}{4}\right) 3\pi + \sin^{-1}\left(\frac{3}{4}\right) 4\pi - \sin^{-1}\left(\frac{3}{4}\right) \theta = 1.995, 2.718, 5.136, 5.859$	
	Check and eliminate	
13c	$\therefore \qquad \theta = 1.995, 5.859$	3 marks for
	$ \underline{u} = \sqrt{2^2 + 1^2} = \sqrt{5}$	correct solution
	$ \underline{v} = 3$	2 marks for
	$\underline{\mu} \cdot \underline{y} = \underline{\mu} \underline{y} \cos \theta$	substantial
	$0+3=3\sqrt{5}\cos\theta$	progress and obtaining $\cos \theta$
	$\cos\theta = \frac{1}{\sqrt{5}} \Rightarrow \sin\theta = \frac{2}{\sqrt{5}}$	1 mark for
	$\therefore \sin 2\theta = 2\sin\theta\cos\theta = 2 \times \frac{2}{\sqrt{5}} \times \frac{1}{\sqrt{5}} = \frac{4}{5}$	magnitude of vectors
	Marker's comments:	
	 Show question, therefore all steps need to be shown. Solutions such as one below, were not awarded full marks 	

	$\Theta = \cos^{-1}\left(\frac{1}{\sqrt{5}}\right)$	
	$\sin 2\theta = \sin \left(2\cos^{-1} \left(\frac{1}{\sqrt{5}} \right) \right) = \frac{4}{5}$	
13d	$y^{2} = (2\cos x - 1)^{2} = 4\cos^{2} x - 4\cos x + 1$	3 marks for correct solution
	$V = \pi \int y^2 dx$	2 marks for 1 integration
	$= \pi \int_0^{\frac{\pi}{3}} 4\cos^2 x - 4\cos x + 1 dx$	error only and correct substitution 2 marks for
	$= \pi \int_{0}^{\frac{\pi}{3}} 4 \times \frac{1}{2} (1 + \cos 2x) - 4\cos x + 1 dx$	correct integration of y^2
	$= \pi \int_0^{\frac{\pi}{3}} 3 + 2\cos 2x - 4\cos x dx$	1 mark for correct
	$=\pi [3x + \sin 2x - 4\sin x]_{0}^{\frac{\pi}{3}}$	expression for y^2
	$= \pi \left[\pi + \sin\left(\frac{2\pi}{3}\right) - 4\sin\left(\frac{\pi}{3}\right) - (0+0-0) \right]$	
	$=\pi\left[\pi+\frac{\sqrt{3}}{2}-\frac{4\sqrt{3}}{2}\right]$	
	$=\pi\left[\pi-rac{3\sqrt{3}}{2} ight]$	
14a	Base case: Let n=1 $8^n - 5^n = 8^1 - 5^1 = 3$ which is a multiple of 3	3 marks – correct solution
	S(k): Let it be true for $n = k$	2 marks – uses inductive step
	i.e. $8^k - 5^k = 3M$, k, $M \in \mathbb{Z}^+$ (positive integers)	
	$8^k = 3M + 5^k$ *	1 mark – proves true for base
	S(k+1): show true for $n = k+1$	case
	RTP $8^{k+1} - 5^{k+1} = 3Q \ (Q \in \mathbb{Z}^+)$	
	LHS = $8^{k} \times 8^{1} - 5^{k} \times 5^{1}$	
	$= (3M + 5^k) \times 8 - 5 \times 5^k$ from *	
	$= 24M + 3 \times 5^k$	
	= $3(8M + 5^k)$ which is divisible by 3 as $M, k \in \mathbb{Z}^+$	

$ \begin{array}{c} \tan \theta = -3 \\ \tan \text{ is negative in } Q2 \text{ and } Q4 \\ \text{however the range of } \tan^{-1}x \text{ is } \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] (Q \ 4 \text{ and } Q \ 1) \\ \text{so } \theta \text{ is in } Q4 \ (\text{where } \cos \theta > 0) \\ \text{so } \cos \theta = \frac{1}{\sqrt{10}} \\ \text{hence } \cos(\tan^{-1}(-3)) = \frac{1}{\sqrt{10}} \\ \text{Markers Note - Many students answered } \pm \frac{1}{\sqrt{10}} \text{ achieving one mark only} \\ \text{as the negative answer is outside the range of } \tan^{-1}x \\ \text{14ci} \\ \begin{array}{c} \frac{dm}{dt} = \max stare of salt pumped into the tank - mass rate of salt pumped out of the tank \\ \text{acconcentration pumped in (in kg/l) × volume rate pumped in (in 1/min) - concentration pumped in (in kg/l) × volume rate pumped out (in 1/min) - concentration pumped in (in kg/l) × volume rate pumped out (in 1/min) \\ \text{acconcentration pumped in (in kg/l) × volume rate pumped out (in 1/min) \\ \text{acconcentration pumped in (in kg/l) × volume rate pumped out (in 1/min) \\ \text{acconcentration pumped in (in kg/l) + volume rate pumped out (in 1/min) \\ \text{acconcentration pumped in (in kg/l) + volume rate pumped out (in 1/min) \\ \text{acconcentration pumped in (in kg/l) + volume rate pumped out (in 1/min) \\ \text{acconcentration pumped in (in kg/l) + volume rate pumped out (in 1/min) \\ \text{acconcentration pumped out (in kg/l) + volume rate pumped out (in 1/min) \\ \text{acconcentration pumped out (in kg/l) + volume rate pumped out (in 1/min) \\ \text{acconcentration pumped out (in kg/l) + volume rate pumped out (in 1/min) \\ \text{acconcentration pumped out (in kg/l) + volume rate pumped out (in 1/min) \\ \text{acconcentration pumped out (in kg/l) + volume rate pumped out (in 1/min) \\ \text{acconcentration pumped out (in kg/l) + volume rate pumped out (in 1/min) \\ \text{acconcentration pumped out (in kg/l) + volume rate pumped out (in 1/min) \\ \text{acconcentration pumped out (in kg/l) + volume rate pumped out (in 1/min) \\ \text{acconcentration pumped out (in kg/l) + volume rate pumped out (in 1/min) \\ \text{acconcentration pumped out (in kg/l) + volume rate pumped out (in 1/min) \\ \text{acconcentration pumped out (in kg/l) + volume rate pumped out (in 1/min) \\ \text{a$	14b	Let $\tan^{-1}(-3) = \theta$	2 marks –
however the range of $\tan^{-1}x$ is $\left[-\frac{\pi}{2},\frac{\pi}{2}\right](Q \ 4 \text{ and } Q \ 1)$ so θ is in Q4 (where $\cos\theta > 0$) so $\cos\theta = \frac{1}{\sqrt{10}}$ hence $\cos(\tan^{-1}(-3)) = \frac{1}{\sqrt{10}}$ Markers Note – Many students answered $\pm \frac{1}{\sqrt{10}}$ achieving one mark only as the negative answer is outside the range of $\tan^{-1}x$ 14ci $\frac{dm}{dt} = \max$ sas rate of salt pumped into the tank - mass rate of salt pumped out of the tank $= \operatorname{concentration pumped out (in kg/L) \times volume rate pumped out (in L/min) - concentration pumped out (in kg/L) × volume rate pumped out (in L/min) - concentration pumped out (in kg/L) × volume rate pumped out (in L/min) = 0 \times 20 - \frac{m}{V_{matk}} \times 15= -\frac{-3m}{200 + 5t}= \frac{-3m}{40 + t}14ci1$			correct solution
however the range of $\tan^{-1} x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right](Q 4 \text{ and } Q 1)$ so θ is in Q4 (where $\cos \theta > 0$) so $\cos \theta = \frac{1}{\sqrt{10}}$ hence $\cos(\tan^{-1}(-3)) = \frac{1}{\sqrt{10}}$ Markers Note – Many students answered $\pm \frac{1}{\sqrt{10}}$ achieving one mark only as the negative answer is outside the range of $\tan^{-1} x$ 14ci $\frac{dm}{dt} = \max$ state of salt pumped into the tank - mass rate of salt pumped out of the tank concentration pumped out (in kg/L) × volume rate pumped out (in L/min) - concentration pumped out (in kg/L) × volume rate pumped out (in L/min) $= \frac{0 \times 20 - \frac{W}{V_{mark}} \times 15}$ $= \frac{-15m}{V_{mark}}$ $= \frac{-15m}{200 + 5t}$ $= \frac{-3m}{40 + t}$ 14ci 14ci $\frac{dm}{dt} = -\frac{3m}{40 + t}$ $\int \frac{dm}{dt} = -3\int \frac{dt}{40 + t}$ $\ln m = -3\ln 40 + t + c$ $\ln + 3\ln(40 + t)^3 = c$ $\ln(m(40 + t)^3) = c$ $m(40 + t)^3 = e^c$ $m = \frac{A}{(40 + t)^3}$ where $A = e^c$ $m = \frac{A}{(40 + t)^3}$ where $A = e^c$ $\sin pification \sin e = 50\sin e = \frac{A}{40^3}A = 50 \times 40^3 = 3200000$		tan is negative in Q2 and Q4	1 mark –
so 0 s in Q4 (where cos 0 > 0) so $\cos 0 = \frac{1}{\sqrt{10}}$ hence $\cos(\tan^{-1}(-3)) = \frac{1}{\sqrt{10}}$ Markers Note – Many students answered $\pm \frac{1}{\sqrt{10}}$ achieving one mark only as the negative answer is outside the range of $\tan^{-1}x$ 14ci $\frac{dm}{dt} = \max$ state of salt pumped into the tank - mass rate of salt pumped out of the tank = concentration pumped in (ln (kg/L) × volume rate pumped out (ln L/min) - concentration pumped out (ln (kg/L) × volume rate pumped out (ln L/min) - concentration pumped out (ln (kg/L) × volume rate pumped out (ln L/min) - concentration pumped out (ln (kg/L) × volume rate pumped out (ln L/min) = $\frac{-15m}{V_{mark}} = \frac{-15m}{200 + 5t}$ $= \frac{-15m}{40 + t}$ 14ci 14ci $\frac{dm}{dt} = -\frac{3m}{40 + t}$ 14ci $\frac{dm}{dt} = -\frac{3m}{40 + t}$ $\ln m = -3\ln 40 + t + c$ $\ln + 3\ln(40 + t)^3 = c$ $\ln(m(40 + t)^3) = c$ $m(40 + t)^3 = c^2$ $m(40 + t)^3 = c^2$ $m(40 + t)^3 = c^2$ $m = \frac{A}{(40 + t)^3}$ where $A = e^c$ $m = \frac{A}{(40 + t)^3}$ where $A = e^c$ $\sin plification$ $50 = \frac{A}{40^3}$ $A = 50 \times 40^3 = 3200000$		however the range of $\tan^{-1}x$ is $\left[-\frac{\pi}{2},\frac{\pi}{2}\right](Q \ 4 \text{ and } Q \ 1)$	Identifies correct
hence $\cos(\tan^{-1}(-3)) = \frac{1}{\sqrt{10}}$ Markers Note – Many students answered $\pm \frac{1}{\sqrt{10}}$ achieving one mark only as the negative answer is outside the range of $\tan^{-1}x$ 14ci $\frac{dm}{dt} = \max \text{ rate of salt pumped int the tank - mass rate of salt pumped out of the tank i = concentration pumped in (in kg/L) × volume rate pumped out (in L/min) - concentration pumped out (in kg/L) × volume rate pumped out (in L/min) - concentration pumped out (in kg/L) × volume rate pumped out (in L/min) = = 0 \times 20 - \frac{m}{V_{tank}} \times 15= \frac{-15m}{200 + 5t}= \frac{-3m}{40 + t}14cii\frac{dm}{dt} = -\frac{3m}{40 + t}\ln + 3\ln(40 + t) = c can remove as m and t are >0)\ln m + \ln(40 + t)^3 = cn(m(40 + t)^3 = c)n(m(40 + t)^3 = c)m(40 + t)^3 = c^{-1}m(40 + t)^$			gives q2
Markers Note – Many students answered $\pm \frac{1}{\sqrt{10}}$ achieving one mark only as the negative answer is outside the range of $\tan^{-1}x$ 14ci $\frac{dm}{dt}$ = mass rate of salt pumped into the tank - mass rate of salt pumped out of the tank = concentration pumped out (in kg/L) × volume rate pumped out (in L/min) - concentration pumped out (in kg/L) × volume rate pumped out (in L/min) = $0 \times 20 - \frac{m}{V_{tank}} \times 15$ = $\frac{-15m}{200 + 5t}$ = $\frac{-15m}{200 + 5t}$ = $\frac{-3m}{40 + t}$ 14cii $\frac{dm}{dt} = -\frac{3m}{40 + t}$ $\int \frac{dm}{dt} = -3\int \frac{dt}{40 + t}$ $\ln m = -3\ln 40 + t + c$ $\ln + 3\ln(40 + t) = c$ can remove as m and t are >0) $\ln m + \ln(40 + t)^3 = c$ $m(40 + t)^3 = c$ $m(40 + t)^3 = c^2$ $m = \frac{A}{(40 + t)^3}$ where $A = e^c$ $m = \frac{A}{(40 + t)^3}$ where $A = e^c$ $\sin the rates = \frac{A}{40^3}$ $A = 50 \times 40^3 = 3200000$		so $\cos\theta = \frac{1}{\sqrt{10}}$	answer.
as the negative answer is outside the range of $\tan^{-1}x$ 14ci $\frac{dm}{dt}$ = mass rate of salt pumped into the tank - mass rate of salt pumped out of the tank1 mark -clearly demonstrated14ci $\frac{dm}{dt}$ = concentration pumped in (in kg/L) × volume rate pumped out (in L/min)1 mark -clearly demonstrated $= 0 \times 20 - \frac{m}{V_{tank}} \times 15$ $= \frac{-15m}{V_{tank}}$ 3 marks - $= \frac{-15m}{V_{tank}}$ $= \frac{-3m}{40 + t}$ correct solution14cii $\frac{dm}{dt} = -\frac{3m}{40 + t}$ 3 marks - $\int \frac{dm}{m} = -3\int \frac{dt}{40 + t}$ Z marks - $\ln m = -3\ln 40 + t + c$ $\ln + 3\ln(40 + t)^3 = c$ $2 marks - correct solution\ln(m(40 + t)^3) = cm = \frac{A}{(40 + t)^3} where A = e^c1 mark - separates integral and integratesment t = 0 m = 5050 = \frac{A}{40^3}A = 50 \times 40^3 = 32000001 mark - separates integral and integrates$		hence $\cos(\tan^{-1}(-3)) = \frac{1}{\sqrt{10}}$	
14ci $\frac{dm}{dt}$ = mass rate of salt pumped into the tank - mass rate of salt pumped out of the tank1 mark -clearly demonstrated= concentration pumped out (in kg/L) × volume rate pumped out (in L/min)= $0 \times 20 - \frac{m}{V_{tank}} \times 15$ = $\frac{-15m}{V_{tank}}$ 1 mark -clearly demonstrated= $\frac{-15m}{V_{tank}} \times 15$ = $\frac{-15m}{V_{tank}} \times 15$ = $\frac{-15m}{200 + 5t}$ 3 marks - correct solution= $\frac{-3m}{40 + t}$ $\int \frac{dm}{dt} = -\frac{3m}{40 + t}$ 3 marks - correct solution14cii $\frac{dm}{dt} = -\frac{3m}{40 + t}$ 2 marks - correct solution $\int \frac{dm}{m} = -3\int \frac{dt}{40 + t}$ 2 marks - correct solution $\ln m = -3\ln 40 + t + c$ $\ln + 3\ln(40 + t) = c$ c can remove as m and t are >0) $\ln m + \ln(40 + t)^3 = c$ $m(40 + t)^3 = c$ $m(40 + t)^3 = c$ $m(40 + t)^3 = c^2$ $m = \frac{A}{(40 + t)^3}$ where $A = e^c$ $1 mark$ - separates $when t = 0 m = 50$ $50 = \frac{A}{40^3}$ $A = 50 \times 40^3 = 3200000$		Markers Note – Many students answered $\pm \frac{1}{\sqrt{10}}$ achieving one mark only	
tank = concentration pumped in (in kg/L) × volume rate pumped in (in L/min) - concentration pumped out (in kg/L) × volume rate pumped out (in L/min) = $0 \times 20 - \frac{m}{V_{tank}} \times 15$ = $\frac{-15m}{200 + 5t}$ = $\frac{-3m}{40 + t}$ 14cii $\frac{dm}{dt} = -\frac{3m}{40 + t}$ $\int \frac{dm}{m} = -3\int \frac{dt}{40 + t}$ $\ln m = -3\ln 40 + t + c$ $\ln + 3\ln(40 + t) = c$ can remove as m and t are >0) $\ln m + \ln(40 + t)^3 = c$ $\ln(m(40 + t)^3) = c$ $m(40 + t)^3 = e^c$ $m = \frac{A}{(40 + t)^3}$ where $A = e^c$ $m = \frac{A}{40^3}$ $A = 50 \times 40^3 = 3200000$			
concentration pumped out (in kg/L) × volume rate pumped out (in L/min) $= 0 \times 20 - \frac{m}{V_{tonk}} \times 15$ $= \frac{-15m}{200 + 5t}$ $= \frac{-3m}{40 + t}$ 14cii $\frac{dm}{dt} = -\frac{3m}{40 + t}$ $\int \frac{dm}{dt} = -\frac{3m}{40 + t}$ $\int \frac{dm}{m} = -3\int \frac{dt}{40 + t}$ $\int \frac{dm}{m} = -3\ln 40 + t + c$ $\ln + 3\ln(40 + t) = c \text{ can remove } \text{ as m and t are } >0)$ $\ln m + \ln(40 + t)^3 = c$ $m(40 + t)^3 = c^{c}$ $m(40 + t)^3 = e^{c}$ $m = \frac{A}{(40 + t)^3} \text{ where } A = e^{c}$ $m + \frac{A}{(40 + t)^3}$ $\int \frac{d}{40^3}$ $A = 50 \times 40^3 = 3200000$	14ci		
$= 0 \times 20 - \frac{m}{V_{tank}} \times 15$ $= \frac{-15m}{V_{tank}}$ $= \frac{-15m}{200 + 5t}$ $= \frac{-3m}{40 + t}$ 14cii $\frac{dm}{dt} = -\frac{3m}{40 + t}$ $\int \frac{dm}{dt} = -\frac{3}{40 + t}$ $\int \frac{dm}{m} = -3\int \frac{dt}{40 + t}$ $\ln m = -3\ln 40 + t + c$ $\ln + 3\ln(40 + t) = c \text{ can remove } \text{ as m and t are } >0)$ $\ln m + \ln(40 + t)^{3} = c$ $\ln(m(40 + t)^{3}) = c$ $m(40 + t)^{3} = e^{c}$ $m = \frac{A}{(40 + t)^{3}} \text{ where } A = e^{c}$ $m = \frac{A}{40^{3}}$ $M = 50 \times 40^{3} = 320000$		= concentration pumped in (in kg/L) $ imes$ volume rate pumped in (in L/min) -	
$= \frac{-15m}{V_{tank}}$ $= \frac{-15m}{200+5t}$ $= \frac{-3m}{40+t}$ 14cii $\frac{dm}{dt} = -\frac{3m}{40+t}$ $\int \frac{dm}{dt} = -\frac{3}{40+t}$ $\int \frac{dm}{m} = -3\int \frac{dt}{40+t}$ $\ln m = -3\ln 40+t + c$ $\ln + 3\ln(40+t) = c \text{ can remove } \text{ as m and t are } >0)$ $\ln m + \ln(40+t)^3 = c$ $\ln(m(40+t)^3) = c$ $m(40+t)^3 = e^c$ $m = \frac{A}{(40+t)^3} \text{ where } A = e^c$ $m = \frac{A}{(40+t)^3}$ $hen t = 0 m = 50$ $50 = \frac{A}{40^3}$ $A = 50 \times 40^3 = 3200000$			
$= \frac{V_{tank}}{-15m}$ $= \frac{-15m}{200 + 5t}$ $= \frac{-3m}{40 + t}$ 14cii $\frac{dm}{dt} = -\frac{3m}{40 + t}$ $\int \frac{dm}{dt} = -3\int \frac{dt}{40 + t}$ $\int \frac{dm}{m} = -3\int \frac{dt}{40 + t}$ $\ln m = -3\ln 40 + t + c$ $\ln + 3\ln(40 + t) = c \text{ can remove } \text{ as m and t are } >0)$ $\ln m + \ln(40 + t)^{3} = c$ $\ln(m(40 + t)^{3}) = c$ $m(40 + t)^{3} = e^{c}$ $m = \frac{A}{(40 + t)^{3}} \text{ where } A = e^{c}$ $m = \frac{A}{40^{3}}$ $A = 50 \times 40^{3} = 3200000$		$= 0 imes 20 - rac{1}{V_{tank}} imes 15$	
$= \frac{-3m}{40+t}$ 14cii $\frac{dm}{dt} = -\frac{3m}{40+t}$ $\int \frac{dm}{dt} = -\frac{3m}{40+t}$ $\int \frac{dm}{m} = -3\int \frac{dt}{40+t}$ $\ln m = -3\ln 40+t + c$ $\ln + 3\ln(40+t) = c \text{ can remove } \text{ as m and t are } >0)$ $\ln m + \ln(40+t)^3 = c$ $\ln(m(40+t)^3) = c$ $m(40+t)^3 = e^c$ $m = \frac{A}{(40+t)^3} \text{ where } A = e^c$ $m = \frac{A}{(40+t)^3} \text{ where } A = e^c$ $m = \frac{A}{40^3}$ $A = 50 \times 40^3 = 320000$		$=\frac{-15m}{V_{t-1}}$	
$= \frac{-3m}{40+t}$ 14cii $\frac{dm}{dt} = -\frac{3m}{40+t}$ $\int \frac{dm}{dt} = -\frac{3m}{40+t}$ $\int \frac{dm}{m} = -3\int \frac{dt}{40+t}$ $\ln m = -3\ln 40+t + c$ $\ln + 3\ln(40+t) = c \text{ can remove } \text{ as m and t are } >0)$ $\ln m + \ln(40+t)^3 = c$ $\ln(m(40+t)^3) = c$ $m(40+t)^3 = e^c$ $m = \frac{A}{(40+t)^3} \text{ where } A = e^c$ $m = \frac{A}{(40+t)^3} \text{ where } A = e^c$ $m = \frac{A}{40^3}$ $A = 50 \times 40^3 = 320000$		$=\frac{-15m}{-1}$	
14cii $\frac{dm}{dt} = -\frac{3m}{40+t}$ $\int \frac{dm}{m} = -3\int \frac{dt}{40+t}$ $\ln m = -3\ln 40+t + c$ $\ln + 3\ln(40+t) = c \text{can remove } \text{ as m and t are } >0)$ $\ln m + \ln(40+t)^3 = c$ $\ln(m(40+t)^3) = c$ $m(40+t)^3 = e^c$ $m = \frac{A}{(40+t)^3} \text{ where } A = e^c$ $m = \frac{A}{(40+t)^3} \text{ where } A = e^c$ $m = \frac{A}{40^3}$ $A = 50 \times 40^3 = 320000$		$200+5t\ -3m$	
$dt = 40 + t$ $\int \frac{dm}{m} = -3\int \frac{dt}{40 + t}$ $\ln m = -3\ln 40 + t + c$ $\ln + 3\ln(40 + t) = c \text{ can remove } \text{ as m and t are } >0)$ $\ln m + \ln(40 + t)^3 = c$ $\ln(m(40 + t)^3) = c$ $m(40 + t)^3 = e^c$ $m = \frac{A}{(40 + t)^3} \text{ where } A = e^c$ $m = \frac{A}{(40 + t)^3} \text{ where } A = e^c$ $ment = 0 m = 50$ $50 = \frac{A}{40^3}$ $A = 50 \times 40^3 = 320000$		$= \frac{1}{40+t}$	
$dt = 40 + t$ $\int \frac{dm}{m} = -3\int \frac{dt}{40 + t}$ $\ln m = -3\ln 40 + t + c$ $\ln + 3\ln(40 + t) = c \text{ can remove } \text{ as m and t are } >0)$ $\ln m + \ln(40 + t)^3 = c$ $\ln(m(40 + t)^3) = c$ $m(40 + t)^3 = e^c$ $m = \frac{A}{(40 + t)^3} \text{ where } A = e^c$ $m = \frac{A}{(40 + t)^3} \text{ where } A = e^c$ $ment = 0 m = 50$ $50 = \frac{A}{40^3}$ $A = 50 \times 40^3 = 320000$	14cii	$dm _ 3m$	3 marks –
$\int \frac{dm}{m} = -3 \int \frac{dt}{40+t}$ $\ln m = -3\ln 40+t + c$ $\ln + 3\ln(40+t) = c \text{can remove } \text{ as m and t are } >0)$ $\ln m + \ln(40+t)^3 = c$ $\ln(m(40+t)^3) = c$ $m(40+t)^3 = e^c$ $m = \frac{A}{(40+t)^3} \text{ where } A = e^c$ $m = \frac{A}{(40+t)^3} \text{ where } A = e^c$ $mhen t = 0 m = 50$ $50 = \frac{A}{40^3}$ $A = 50 \times 40^3 = 3200000$		dt = 40 + t	
$\ln m = -3\ln 40 + t + c$ $\ln + 3\ln(40 + t) = c \text{ can remove } \text{ as m and t are } >0)$ $\ln m + \ln(40 + t)^3 = c$ $\ln(m(40 + t)^3) = c$ $m(40 + t)^3 = e^c$ $m = \frac{A}{(40 + t)^3} \text{ where } A = e^c$ $m = \frac{A}{(40 + t)^3} \text{ where } A = e^c$ $m = \frac{A}{(40 + t)^3} \text{ where } A = e^c$ $m = \frac{A}{(40 + t)^3} \text{ where } A = e^c$ $m = \frac{A}{(40 + t)^3} \text{ where } A = e^c$ $m = \frac{A}{(40 + t)^3} \text{ where } A = e^c$ $m = \frac{A}{(40^3)}$ $A = 50 \times 40^3 = 3200000$		$\int dm = 2 \int dt$	fully detailed
$\ln m = -3\ln 40 + t + c$ $\ln + 3\ln(40 + t) = c \text{ can remove } \text{ as m and t are } >0)$ $\ln m + \ln(40 + t)^3 = c$ $\ln(m(40 + t)^3) = c$ $m(40 + t)^3 = e^c$ $m = \frac{A}{(40 + t)^3} \text{ where } A = e^c$ $m = \frac{A}{(40 + t)^3} \text{ where } A = e^c$ $mhen t = 0 m = 50$ $50 = \frac{A}{40^3}$ $A = 50 \times 40^3 = 320000$		$\int \frac{d}{m} = -5 \int \frac{d}{40+t}$	2 marks –
$\ln m + \ln(40 + t)^{3} = c$ $\ln(m(40 + t)^{3}) = c$ $m(40 + t)^{3} = e^{c}$ $m = \frac{A}{(40 + t)^{3}} \text{ where } A = e^{c}$ $m = \frac{A}{(40 + t)^{3}} \text{ where } A = e^{c}$ $mhen \ t = 0 \ m = 50$ $50 = \frac{A}{40^{3}}$ $A = 50 \times 40^{3} = 320000$		$\ln m = -3\ln 40+t + c$	
$\ln m + \ln(40 + t)^{2} = c$ $\ln(m(40 + t)^{3}) = c$ $m(40 + t)^{3} = e^{c}$ $m = \frac{A}{(40 + t)^{3}} \text{ where } A = e^{c}$ $m = \frac{A}{(40 + t)^{3}} \text{ where } A = e^{c}$ $mhen \ t = 0 \ m = 50$ $50 = \frac{A}{40^{3}}$ $A = 50 \times 40^{3} = 320000$		$\ln + 3\ln(40 + t) = c$ can remove as m and t are >0)	-
$\ln(m(40+t)^{3}) = c$ $m(40+t)^{3} = e^{c}$ $m = \frac{A}{(40+t)^{3}} \text{ where } A = e^{c}$ $when t = 0 m = 50$ $50 = \frac{A}{40^{3}}$ $A = 50 \times 40^{3} = 3200000$		$\ln m + \ln(40+t)^3 = c$	
$m(40+t) = e$ $m = \frac{A}{(40+t)^{3}} \text{ where } A = e^{c}$ $when t = 0 m = 50$ $50 = \frac{A}{40^{3}}$ $A = 50 \times 40^{3} = 3200000$ separates integral and integrates correctly		$\ln(m(40+t)^3) = c$	Simplification
$m = \frac{A}{(40+t)^3} \text{ where } A = e^c \qquad \text{integral and} \\ when t = 0 \ m = 50 \\ 50 = \frac{A}{40^3} \\ A = 50 \ \times \ 40^3 = 3200000 \qquad \text{integral and} \\ \end{cases}$			
when $t = 0$ $m = 50$ $50 = \frac{A}{40^3}$ $A = 50 \times 40^3 = 3200000$		$m = \frac{A}{(40+t)^3}$ where $A = e^c$	integral and
$50 = \frac{A}{40^3}$ $A = 50 \times 40^3 = 3200000$			-
$A = 50 \times 40^3 = 3200000$			
$A = 50 \times 40^3 = 3200000$		$50 = \frac{1}{40^3}$	
$m = \frac{3200000}{(40 + c)^3}$			
$(40 + c)^3$		$m = \frac{3200000}{10000000000000000000000000000000$	
(40 + t)		$(40+t)^3$	

14ciii	Volume is increasing by 5L/min. Needs to increase by 300L to overflow. This will take 60 minutes. When t=60: 3200000	2 marks – correct solution
	$m = \frac{3200000}{(40+60)^3}$ = 3.2kg	1 mark – finds t=60
14di	$f'(x) = \tan^{-1} \left(\frac{e^x - e^{-x}}{2} \right)$ $f'(x) = \frac{\frac{1}{2}(e^x + e^{-x})}{1 + \left(\frac{e^x - e^{-x}}{2}\right)^2}$	3 marks – correct solution including <u>showing</u> factorising and cancelling to achieve f'(x)=2g'(x)
	$= \frac{\frac{1}{2}(e^{x} + e^{-x})}{1 + \left(\frac{e^{2x} - 2 + e^{-2x}}{4}\right)}$ $= \frac{2(e^{x} + e^{-x})}{4 + ((e^{2x} - 2 + e^{-2x}))}$	2 marks – expands the square on the
	$= \frac{2(e^{x} + e^{-x})}{2 + e^{2x} + e^{-2x}}$	denominator correctly and some correct tidying up
	$= \frac{2\left(e^{x} + \frac{1}{e^{x}}\right)}{2 + e^{2x} + \frac{1}{e^{2x}}}$	1 mark – correctly differentiates f(x)
	$= \frac{2(e^{3x} + e^{x})}{2e^{2x} + e^{4x} + 1})$	(no marks assigned for
	$= \frac{2e^{x}(e^{2x}+1)}{(e^{2x}+1)^{2}}$	finding g'(x))
	$= \frac{2e^x}{e^{2x}+1}$	
	= $2g'(x)$ $\therefore f'(x) = 2g'(x)$ as required	

14dii	$f(x) = \int f(x) dx$	1 mark –
	$f(x) = \int f'(x) dx$	correct solution
	ſ	including using
	$= 2 \int g'(x) dx \text{ (from (i))}$	initial
	= 2 - (-) + -	conditions to correctly find
	= 2g(x) + c	the value of c
	$= 2 \tan^{-1}(e^x) + c$	
	when $x = 0 f(x) = \tan^{-1}\left(\frac{e^0 - e^0}{2}\right)$	
	$f(0) = \tan^{-1}(0) = 0$	
	$\therefore 2\tan^{-1}(e^0) + c = 0$	
	$2\tan^{-1}(1) + c = 0$	
	$2 \times \frac{\pi}{4} + c = 0$	
	$c = -\frac{\pi}{2}$	
	and $f(x) = 2g(x) - \frac{\pi}{2}$	